A Bayesian inference model for speech localization (L).
نویسندگان
چکیده
The localization of active speakers with microphone arrays is an active research line with a considerable interest in many acoustic areas. Many algorithms for source localization are based on the computation of the Generalized Cross-Correlation function between microphone pairs employing phase transform weighting. Unfortunately, the performance of these methods is severely reduced when wall reflections and multiple sound sources are present in the acoustic environment. As a result, estimating the number of active sound sources and their actual directions becomes a challenging task. To effectively tackle this problem, a Bayesian inference framework is proposed. Based on a nested sampling algorithm, a mixture model and its parameters are estimated, indicating both the number of sources-model selection-and their angle of arrival-parameter estimation, respectively. A set of measured data demonstrates the accuracy of the proposed model.
منابع مشابه
Bayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملInference of Markov Chain: AReview on Model Comparison, Bayesian Estimation and Rate of Entropy
This article has no abstract.
متن کاملPseudo-Likelihood Inference Underestimates Model Uncertainty: Evidence from Bayesian Nearest Neighbours
When using the K-nearest neighbours (KNN) method, one often ignores the uncertainty in the choice of K. To account for such uncertainty, Bayesian KNN (BKNN) has been proposed and studied (Holmes and Adams 2002 Cucala et al. 2009). We present some evidence to show that the pseudo-likelihood approach for BKNN, even after being corrected by Cucala et al. (2009), still significantly underest...
متن کاملBayesian approach to inference of population structure
Methods of inferring the population structure, its applications in identifying disease models as well as foresighting the physical and mental situation of human beings have been finding ever-increasing importance. In this article, first, motivation and significance of studying the problem of population structure is explained. In the next section, the applications of inference of p...
متن کاملAn Introduction to Inference and Learning in Bayesian Networks
Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of the Acoustical Society of America
دوره 132 3 شماره
صفحات -
تاریخ انتشار 2012